exponential$26816$ - définition. Qu'est-ce que exponential$26816$
DICLIB.COM
Outils linguistiques IA
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:     

Traduction et analyse des mots par intelligence artificielle

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est exponential$26816$ - définition

HOLOMORPHIC FUNCTION WITH GROWTH BOUNDED BY AN EXPONENTIAL FUNCTION
Exponential Type; User:Mkelly86/Exponential Type
  • The graph of the function in gray is <math>e^{-\pi z^{2}}</math>, the Gaussian restricted to the real axis. The Gaussian does not have exponential type, but the functions in red and blue are one sided approximations that have exponential type <math>2\pi</math>.

exponential function         
  • The red curve is the exponential function.  The black horizontal lines show where it crosses the green vertical lines.
  • The exponential function e^z plotted in the complex plane from -2-2i to 2+2i
MATHEMATICAL FUNCTION WITH A CONSTANT BASE AND A VARIABLE EXPONENT, DENOTED EXP_A(X) OR A^X
Complex exponential function; Complex exponential; Natural exponential function; E^x; Exp(x); Exp (programming); Complex exponentials; Real exponential function; E**x; E to the x; Cb^x; Exponential Function; Exponential equation; Exponential equations; ⅇ; Natural exponent; Exponential minus 1 function; Exponential minus 1; Expm1; Exp-1; Exp1m; Expm1(x); Exp1m(x); Natural exponential minus 1; Natural exponential; E^X-1; E^x-1; Exp(x)-1; Base e antilogarithm; Exponent of e; Base e anti-logarithm; Exponential minus one function; Exponential minus one; Natural exponential minus one; Natural exponential minus one function; Exponential near 0; Exponential near zero; Natural exponential near 0; Natural exponential near zero; Eˣ-1; Eˣ - 1; Eˣ; Eˣ−1; Eˣ − 1; E^x−1; Exp(x)−1; Exponential base
¦ noun Mathematics a function whose value is a constant raised to the power of the argument, especially the function where the constant is e.
Exponential distribution         
  •  title=Cumfreq, a free computer program for cumulative frequency analysis}}</ref>
  • The mean is the probability mass centre, that is, the [[first moment]].
  • The median is the [[preimage]] ''F''<sup>−1</sup>(1/2).
  • date=September 2017}}
PROBABILITY DISTRIBUTION
Exponential random variable; The Exponential Distribution; Negative exponential distribution; Exponential random numbers; Exponential probability distribution; Exponentially distributed; Competing exponentials
In probability theory and statistics, the exponential distribution is the probability distribution of the time between events in a Poisson point process, i.e.
exponential         
WIKIMEDIA DISAMBIGUATION PAGE
Exponentially; Exponentials; Exponential (disambiguation)
1. <mathematics> A function which raises some given constant (the "base") to the power of its argument. I.e. f x = b^x If no base is specified, e, the base of {natural logarthims}, is assumed. 2. <complexity> exponential-time algorithm. (1995-04-27)

Wikipédia

Exponential type

In complex analysis, a branch of mathematics, a holomorphic function is said to be of exponential type C if its growth is bounded by the exponential function eC|z| for some real-valued constant C as |z| → ∞. When a function is bounded in this way, it is then possible to express it as certain kinds of convergent summations over a series of other complex functions, as well as understanding when it is possible to apply techniques such as Borel summation, or, for example, to apply the Mellin transform, or to perform approximations using the Euler–Maclaurin formula. The general case is handled by Nachbin's theorem, which defines the analogous notion of Ψ-type for a general function Ψ(z) as opposed to ez.